

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 851-854

Substrate dependent intramolecular palladium-catalysed cyclisation and subsequent β -H elimination or C–H activation: a general method for the synthesis of fused pyran rings

Rathin Jana, Shubhankar Samanta, Jayanta K. Ray*

Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India Received 21 September 2007; revised 21 November 2007; accepted 28 November 2007 Available online 4 December 2007

Abstract

An efficient and convenient method for the synthesis of fused pyran rings via intramolecular palladium-catalysed cyclisation followed by β -H elimination or C–H activation has been developed. It is possible to utilise this method for the synthesis of benzopyran systems. © 2007 Elsevier Ltd. All rights reserved.

Keywords: C-H activation; Benzopyran; Tetracyclic pyran ring; Heterocycles

1. Introduction

Intramolecular palladium-catalysed oxidative cyclisation is a powerful method for the construction of heterocycles.¹ This method has been extended for the synthesis of many natural products such as the phenanthridone alkaloid, (+)-pancratistin and its analogs.² Diospongines A and B also possess a six-membered cyclic ether core unit with two aromatic side chains.³ Carbohydrate derivatives bearing fused pyran or furan rings have also been prepared by intramolecular Heck cyclisation.⁴ Guillou and co-workers utilised an intramolecular Heck cyclisation to prepare a benzopyran ring during the synthesis of the alkaloid lycoramine.⁵ Based on a previous report utilising a pyran ring system as the subunit of natural products, we proposed a method for the development of these ring systems via palladium-catalysed intramolecular^{6–8} reaction of substituted cyclic derivatives of 3-allyloxy-1-bromopropene and 3-(3bromo-allyloxy)-2-methylpropene. Attention was first focused on the construction of the starting materials for the Heck reaction by O-allylation and O-methallylation of bromoalcohols. Thus, vinyl bromoaldehydes 1 were first reduced to vinyl bromoalcohols **2a** with sodium borohydride in CH₃CN (Scheme 1).

Scheme 1. Preparation and O-allylation/methallylation of bromovinyl alcohol.

* Corresponding author. Tel.: +91 3222 283326; fax: +91 3222 282252. *E-mail address:* jkray@chem.iitkgp.ernet.in (J. K. Ray).

0040-4039/\$ - see front matter \odot 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.11.172

Vinyl bromoaldehydes **1a** were also aromatised with DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone) to produce aromatic bromoaldehydes **1b**, which on sodium borohydride reduction yielded aromatic bromoalcohols **2b**. Alcohols **2a** and **2b** were converted to O-allylated/methallylated products **3** and **4** (for structures, see Table 1) by reaction with allyl bromide/methallyl bromide in the presence of sodium hydride in THF at 0 °C. The intramolecular Heck reaction was performed with O-allylated **3** in the presence of Pd(OAc)₂, PPh₃, Cs₂CO₃ and TBAC (tetrabutylammonium chloride) in DMF at 80 °C to afford pyran derivatives **5a–f** (Table 1, entries 1–6, Scheme 2). With compound **3g**, however, products **5g** and **5h** were formed in a 65:10 ratio.

During our studies, an interesting result was observed (Scheme 3). O-Methallylated compounds **4a**–c and aromatised compounds **4d**, **4e** were subjected to intramolecular

Scheme 2. Pd-catalysed intramolecular cyclisation of O-allylated derivatives.

Heck reaction under the same conditions to afford pyrans **6a–e**, while compounds **4f** and **4g** afforded *gem*-dimethyl products due to the difficulty of formation of a four-membered ring through C–H activation.

The formation of products 6a-e can be explained through C-H activation⁹ of the cyclic organopalladium addition intermediates, formed by addition to the unactivated double bond. (see Table 2).

Table 1 Palladium-catalysed intramolecular cyclisation of O-allylated derivatives of bromoalcohols

Entry	Substrate	Product	Time (h)	Yield (%)
1	Br O 3a	o 5a	6	75
2	Meo 3b	MeO 5b	5	72
3	3c		5	70
4	Br O 3d	o 5d	6	65
5	Br O 3e	o 5e	6	70
6	Br O MeO 3f	MeO 5f	5	72
7	Br 3g	5g 5h	6	65 + 10

Reagents and conditions: 3a-g (1 equiv), Pd(OAc)₂ (10 mol %), PPh₃ (0.25 equiv), Cs₂CO₃ (1 equiv), TBAC (1.5 equiv), DMF, 80-85 °C.

Scheme 3. Pd-catalysed intramolecular cyclisation of O-methallylated derivatives. $% \label{eq:constraint}$

A plausible mechanism for the above reaction is shown in Scheme 4. Initially an alkenyl palladium(II) intermediate was generated by oxidative addition of Pd(0) to the sp^2 C–Br bond which undergoes addition to the unactivated

Table 2 Palladium catalysed intramolecular cyclisation of O-methallylated bromoalcohols

Table 2 (continued)

Scheme 4. A plausible mechanism for the Pd-catalysed cyclisation.

double bond to produce an alkylpalladium which underwent cyclisation with the aromatic ring through C–H activation. Since no elimination is possible due to the absence of a β -H in the alkylpalladium intermediates, C–H activation is facilitated.

In conclusion, we have developed a method for the synthesis of fused pyran rings by intramolecular Heck reaction and tetracyclic pyran formation by intramolecular Heck reaction and regioselective C–H activation.

2. Typical experimental procedure for the Heck reaction

Compounds **3** or **4** (1 equiv), $Pd(OAc)_2$ (10 mol %), PPh₃ (0.25 equiv), Cs_2CO_3 (1 equiv) and DMF (6 mL) were placed in a two neck round bottom flask. After degassing with N₂, the mixture was heated at 80–85 °C for 4 h. After cooling, the reaction mixture was diluted with cold water and extracted with ether (20 mL × 3) and the combined organics dried (Na₂SO₄). The solvent was evaporated and the crude product was purified by preparative thin layer chromatography.

2.1. Spectral data of representative compounds

Compound **5b**: White solid, mp 80–82 °C; ¹H NMR (CDCl₃, 400 MHz) δ : 2.09 (t, 2H, J = 7.2 Hz), 2.70 (t, 2H, J = 7.2 Hz), 3.81 (s, 3H), 4.31 (s, 2H), 4.36 (s, 2H), 5.10 (s, 1H), 5.37 (s, 1H), 6.72–6.75 (m, 2H), 7.47 (d, 1H, J = 8.4 Hz). ¹³C NMR (CDCl₃, 100 MHz) δ : 25.07, 28.34, 55.28, 69.24, 71.36, 110.16, 110.79, 113.78, 125.31, 126.26, 127.08, 134.07, 136.98, 138.78, 158.13, MS-ESI: m/z = 229.1557 (100%) [M⁺+H].

Compound **6c**: White solid, mp 98–100 °C; ¹H NMR (CDCl₃, 400 MHz) δ : 1.34 (s, 3H) 2.09–2.22 (m, 2H), 2.68–2.92 (m, 4H), 3.29 (d, 1H, J = 10.0 Hz), 3.77 (s, 3H), 3.93 (d, 1H, J = 10.0 Hz), 3.97 (d, 1H, J = 16.0 Hz), 4.42 (d, 1H, J = 16.0 Hz), 6.60 (s, 1H), 6.64 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ : 24.45, 25.34, 26.57, 43.27, 46.53, 55.57, 67.09, 73.87, 108.42, 110.40, 110.76, 111.57, 122.43, 131.98, 139.04, 160.70. MS-ESI: m/z = 243.1367 (100%), [M⁺+H]. HRMS calcd for C₁₆H₁₉O₂ [M⁺+H]: 243.1385; found: 243.1367.

Acknowledgement

Financial support from CSIR (New Delhi) is gratefully acknowledged.

References and notes

- 1. Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644-4680.
- Grubb, L. M.; Dowdy, A. L.; Blanchette, H. S.; Friestad, G. K.; Branchaud, B. P. *Tetrahedron Lett.* 1999, 40, 2691–2694.
- Sawant, K. B.; Jennings, M. P. J. Org. Chem. 2006, 71, 7911– 7914.
- 4. Tenaglia, A.; Karl, F. Synlett 1996, 327-329.
- Gras, E.; Guillou, C.; Thal, C. Tetrahedron Lett. 1999, 40, 9243– 9244.
- Mal, S. K.; Ray, D.; Ray, J. K. Tetrahedron Lett. 2004, 45, 277– 279.
- 7. Ray, D.; Mal, S. K.; Ray, J. K. Synlett 2005, 14, 2135-2140.
- 8. Ray, D.; Ray, J. K. Org. Lett. 2007, 9, 191-194.
- Grigg, R.; Sridharan, V.; Sukirthalingam, S. Tetrahedron Lett. 1991, 32, 3855–3858.